In case the field quantities are sinusoidally time varying; the electric field

**E**can be expressed as**E**(x, y, z, t) = E

_{x}(x, y, z, t)

**a**+E

_{x}_{y}(x, y , z, t)

**a**+ E

_{y}_{z}(x, y, z, t)

**a**

_{z}
Where E

_{x}= E_{xm}cos(ωt+θ_{x}), E_{y}= E_{ym}cos(ωt+θ_{y}), E_{z}= E_{zm}cos (ωt+θ_{z}). Here the magnitudes E_{xm}, E_{ym}, E_{zm}, and the phase angles θ_{x}, θ_{y}, θ_{z}, are independent of time but may depend on spatial coordinates, e. g., E_{xm}(x, y, z), θ_{x}(x, y, z). Now E_{x}can be expressed asMaxwell's Equations |

Maxwell's Equations in Phasor Form |

## No comments:

## Post a Comment